

ERZ-LNA-0950-1800-30-3.5

Main Features:

• Frequency Range: 9.5 to 18 GHz.

• Typical values: Gain 30 dB, NF 2.5 dB

• RF connectors (I/O): SMA Female

• Solder filtered pins for DC connection

Several mounting options

· Compact aluminum housing

 Hi-reliability and dedicated screening/ environmental tests available under request

ERZ-LNA-0950-1800-30-3.5

The ERZ-LNA-0950-1800-30-3.5 is a Low Noise Amplifier providing a gain of 30 dB with a noise figure of 2.5 dB. The compact size and modularity makes it ideal for a wide range of applications.

Typical applications:

- Industrial / Laboratory
- Satcom / Telecom
- Space / Aerospace

Performance

Parameter	Value			Units
	Min	Тур	Max	
Frequency	9.5	-	18	GHz
Output Power (P1dB)	12	13	172	dBm
Small Signal Gain	30	31	32	dB
Gain Flatness	-	±1.2	-	dB
Noise Figure	2	2.5	3	dB
VSWR input	1:1	1.3:1	2.0:1	-
VSWR output	1.2:1	1.5:1	2.0:1	-
DC Voltage	12	15	17	V
Power Consumption	-	1.5	-	W
RF Connectors	SMA Female IN/OUT		-	

Specifications at a case temperature of 25°C at 15 V unless otherwise indicated

ERZ-LNA-0950-1800-30-3.5

Output Power at 1 dB Compression

Figure 1 shows output power at 1dB compression measurement as a function of frequency at room temperature (25°C)

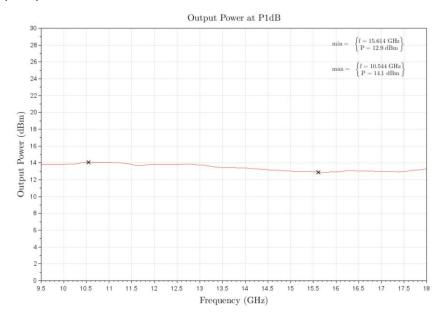


Figure 1: ERZ-LNA-0950-1800-30-3.5 P1dB

ERZ-LNA-0950-1800-30-3.5

Small Signal Gain

Figure 2 shows small signal gain measurement as a function of frequency at different temperatures.

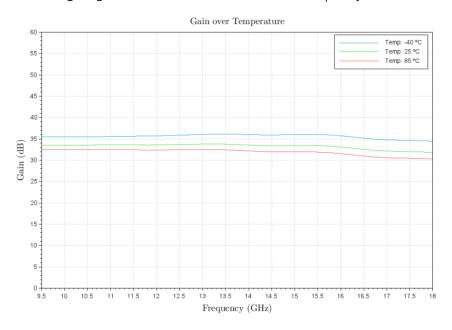


Figure 2: ERZ-LNA-0950-1800-30-3.5 Small Signal Gain

Noise Figure

Figure 3 shows the noise figure measurement as a function of frequency at room temperatura (25°C).

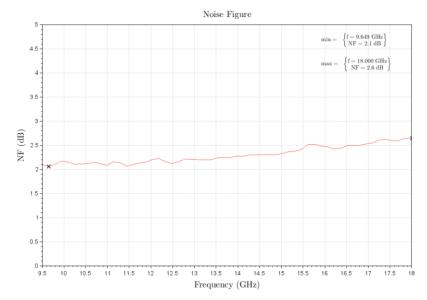


Figure 3: ERZ-LNA-0950-1800-30-3.5 Noise Figure

ERZ-LNA-0950-1800-30-3.5

Input and Output Matching

Figure 4 shows input (S11) and output (S22) VSWR as a function of frequency at room temperature (25°C).

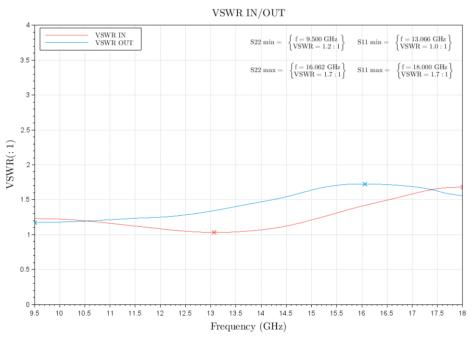


Figure 4: ERZ-LNA-0950-1800-30-3.5 Input&Output Matching

ERZ-LNA-0950-1800-30-3.5

Absolute Maximum Ratings

Condition	Value	
DC Voltage	+17 VDC	
Maximum Input Power (CW)	20 dBm	
Operation temperature (at case)	-40 to 85 °C	
Storage temperature	-55 to 125 °C	

- Stress above these ratings may cause permanent damage to the device.
- It is final user responsibility to maintain the amplifier within the specified ranges.

Measurements Conditions

All measurements provided in this report were performed at the following conditions:

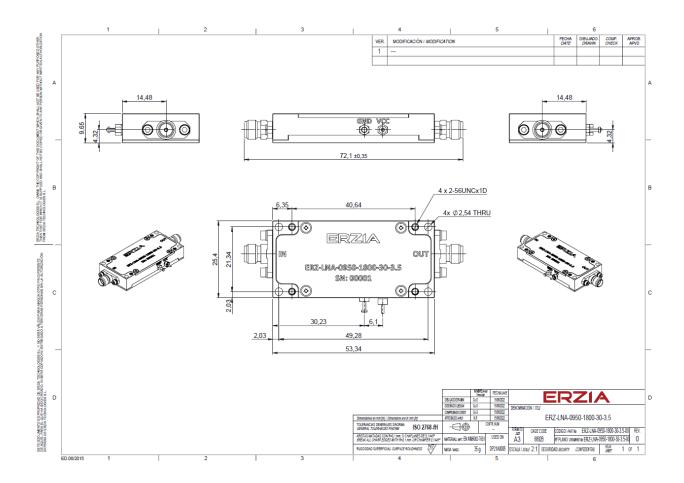
Condition	Value
Temperature (DUT ON)	25 °C ± 1°C
Humidity	44% ± 10%
DUT Warm up time	30 min
DUT minimum operation time	24 hours
Test equipment warm up time	2 hours
Additional temperature cycles in climatic chamber (DUT OFF)	-40°C to 85°C

Environmental Specifications (By Design)

Operating Temperature: -45 to +85 °C (MIL-STD-810F, method 520.2) Storage Temperature: -55 to 125 °C (MIL-STD-810F, method 520.2) Vibration: 8g rms (MIL-STD-810F, method 514.5) Shock: 20g,11ms,saw-tooth (MIL-STD-810F, method 516.5) Acceleration: 15g (MIL-STD-810F, method 513.5)

RoHS & REACH Compliance

This part is compliant with EU 2011/65/UE RoHS (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) and REACH (Registration, Evaluation, Authorization and restriction of Chemical substances) directives.



ERZ-LNA-0950-1800-30-3.5

Mechanics and Interfaces

Parameter	Value	
Size	53.34x25.4x9.65 mm	
Weight	35 grams +/-10%	
RF Input Connector	SMA Female	
RF Output Connector	SMA Female	
DC Connector	Filtered Pins	

ERZ-LNA-0950-1800-30-3.5

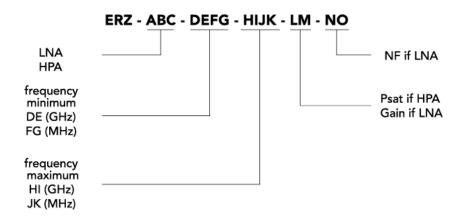
Documentation and Test Reports

All modules are at least delivered with: Electrical Test Report, Certificate of Conformance, Certificate of Acceptance and Origin. Optionally, units can be environmentally tested (temperature, vibration...).

Option (HS): Heat Sink

A heat sink (HS) can be provided to allow the operation of Power Amplifiers. Please note that most power amplifiers need heat sink or appropriate heat dissipation strategy.

Space Usage


Most of ERZIA's products are based on rad-hard technologies and can be manufactured and integrated according to specific hi-rel standard-screening for space, aeronautics, or specific hi-reliability usage.

Customization and Extended Performances

ERZIA can fully design or adapt one of the existing RF amplifiers designs according to your specifications. Please contact us for additional information.

Model Number Codification

MODEL NUMBER

20250806_rev1.0

 $Copyright @\ 2025\ ERZIA\ Technologies.\ All\ rights\ reserved.\ This\ information\ is\ commercial\ and\ indicative,\ subject\ to\ change\ without\ notice$