

ERZ-LNA-0200-1800-18-5.5

ERZ-LNA-0200-1800-18-5.5

The ERZ-LNA-0200-1800-18-5.5 is a Low Noise Amplifier providing a gain of 18 dB with a noise figure of 3 dB. The compact size and modularity makes it ideal for a wide range of applications.

Main Features:

• Frequency Range: 2 to 18 GHz.

• Typical values: Gain 18 dB, NF 3 dB

• RF connectors (I/O): SMA

• Solder filtered pins for DC connection

Several mounting options

Gold platted compact aluminum housing

 Hi-reliability and dedicated screening/ environmental tests available under request

Typical applications:

- Industrial / Laboratory
- Satcom / Telecom

Space / Aerospace / Military

Performance

Parameter	Value			Units
	Min	Тур	Max	
Frequency	2	-	18	GHz
Output Power (P1dB)	17	19	24	dBm
Small Signar Gain	14	18	20	dB
Gain flatness	-	±2.5	-	dB
Noise Figure	2	3	4.5	dB
VSWR input	1.0:1	1.5:1	2.0:1	-
VSWR output	1.0:1	1.8:1	2.5:1	-
DC Voltage	10	12	14	V
Power Consumption		2.4		W
Connectors	SMA Female IN/OUT			-

Specifications at a case temperature of 25°C at 12V.

ERZ-LNA-0200-1800-18-5.5

Output Power at 1 dB Compression

Figure 1 shows output power at 1dB compression measurement as a function of frequency at room temperature (25°C).

Figure 1: ERZ-LNA-0200-1800-18-5.5 P1dB

Small Signal Gain

Figure 2 shows the small signal gain measurement as a function of frequency at room temperature (25°C).

Figure 2: ERZ-LNA-0200-1800-18-5.5 Small Signal Gain

ERZ-LNA-0200-1800-18-5.5

Small Signal Gain over Temperature

Figure 3 shows small signal gain measurement as a function of frequency at three different temperatures.

Figure 3: ERZ-LNA-0200-1800-18-5.5 Gain variation over temperature and frequency.

Noise Figure

Figure 4 shows the noise figure measurement as a function of frequency at room temperature (25°C).

Figure 4: ERZ-LNA-0200-1800-18-5.5 Noise Figure

ERZ-LNA-0200-1800-18-5.5

Input and Output Matching

Figure 5 and Figure 6 show input (S11) and output (S22) VSWR as a function of frequency at room temperature (25°C).

Figure 5: ERZ-LNA-0200-1800-18-5.5 Input Matching

Figure 6: ERZ-LNA-0200-1800-18-5.5 Output Matching

ERZ-LNA-0200-1800-18-5.5

Absolute Maximum Ratings

Condition	Value	
DC Voltage	14 VDC	
Maximum Input Power (CW)	20 dBm	
Operation temperature (at case)	-54 to 85°C	
Storage temperature	-55 to 125°C	

- Stress above these ratings may cause permanent damage to the device.
- It is final user responsibility to maintain the amplifier within the specified ranges.

Measurements Conditions

All measurements provided in this report were performed at the following conditions:

Condition	Value	
Temperature (DUT ON)	-54°C, 25°C, 85°C ± 1°C	
Humidity	44% ± 10%	
DUT Warm up time	30 min	
DUT minimum operation time	24 hours	
Test equipment warm up time	2 hours	
Additional temperature cycles in climatic chamber (DUT OFF)	-40°C to 85°C	

Environmental Specifications (By Design)

Operating Temperature: -54 to +85 °C (MIL-STD-810F, method 520.2) Storage Temperature: -55 to 125 °C (MIL-STD-810F, method 520.2) Vibration: 8g rms (MIL-STD-810F, method 514.5) Shock: 20g,11ms,saw-tooth (MIL-STD-810F, method 516.5) Acceleration: 15g (MIL-STD-810F, method 513.5)

RoHS & REACH Compliance

This part is compliant with EU 2011/65/UE RoHS (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) and REACH (Registration, Evaluation, Authorization and restriction of Chemical substances) directives.

ERZ-LNA-0200-1800-18-5.5

Mechanics and Housing

ERZ-LNA-0200-1800-18-5.5

Documentation and Test Reports

All modules are at least delivered with: Electrical Test Report, Certificate of Conformance, Certificate of Acceptance and Origin. Optionally, units can be environmentally tested (temperature, vibration...).

Option (HS): Heat Sink

A heat sink (HS) can be provided to allow the operation of Power Amplifiers. Please note that most power amplifiers need heat sink or appropriate heat dissipation strategy.

Space / Military Usage

Most of ERZIA's products are based on rad-hard technologies and can be manufactured and integrated according to MIL / ECSS or specific hi-rel standard-screening for space, aeronautics, military or specific hi-reliability usage.

Customization and Extended Performances

ERZIA can fully design or adapt one of the existing RF amplifiers designs according to your specifications. Please contact us for additional information.

Model Number Codification

MODEL NUMBER

20171106_rev2.1

Copyright © 2017 ERZIA Technologies. All rights reserved. This information is commercial and indicative, subject to change without notice