

ERZ-HPA-0200-2000-37

Main Features:

- Frequency Range: 2 to 20 GHz.
- Typical values: Psat 37 dBm, Gain 36 dB
- RF connectors (I/O): SMA Female
- DB9 connector for DC & Control connection
- Several mounting options
- Compact aluminum housing
- Hi-reliability and dedicated screening/ environmental tests available under request

ERZ-HPA-0200-2000-37

The ERZ-HPA-0200-2000-37 is a wideband high power amplifier providing an output power of 37 dBm and a gain of 36 dB. The compact size and modularity makes it ideal for a wide range of applications.

Typical applications:

- Industrial / Laboratory
- Satcom / Telecom
- Space / Aerospace / Military

Performance

Parameter	Value			Units
	Min	Тур	Max	
Frequency	2	-	20	GHz
Output Power (Psat)	36	37	41	dBm
Small Signal Gain	33	36	38	dB
Gain Flatness	-	± 2	-	dB
Noise Figure	-	-	-	dB
VSWR input	1.1:1	1.8:1	2.0:1	-
VSWR output	1.1:1	1.8:1	2.0:1	-
DC Voltage	24	28	32	V
Power Consumption	-	45 @ Psat	-	W
RF Connectors	SMA Female IN/OUT		-	

Specifications at a case temperature of 25°C

ERZ-HPA-0200-2000-37

Saturated output power

Figure 1 shows output power (Psat) measurement as a function of frequency frequency at different temperatures (-40, 25 and 85 °C).

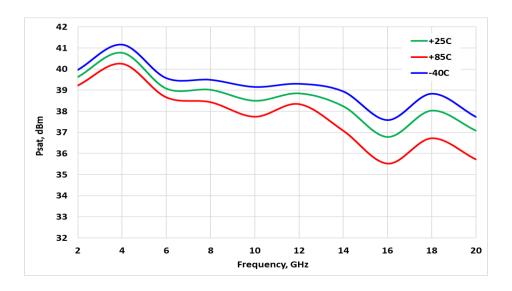


Figure 1: ERZ-HPA-0200-2000-37 Psat

Small Signal Gain

Figure 2 shows the small signal gain measurement as a function of frequency at different temperatures (-40, 25 and 85 °C).

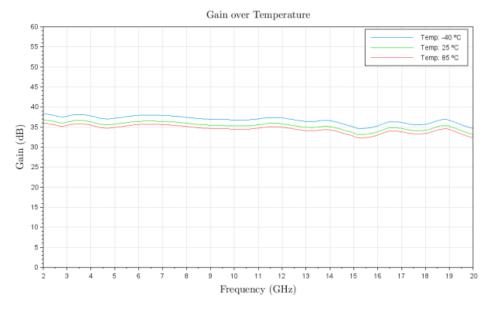


Figure 2: ERZ-HPA-0200-2000-37 Small Signal Gain

ERZ-HPA-0200-2000-37

Input and Output Matching

Figure 3 shows input reflection coefficient (S11) as a function of frequency at room temperature (25°C).

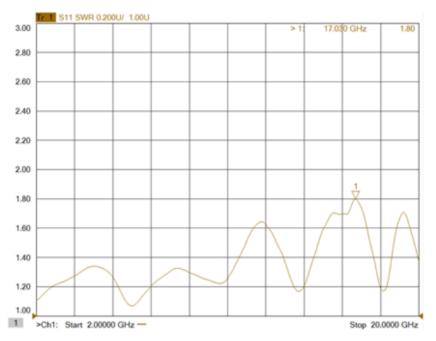


Figure 3: ERZ-HPA-0200-2000-37 S11

Figure 4 shows output reflection coefficient (S22) as a function of frequency at room temperature (25°C).

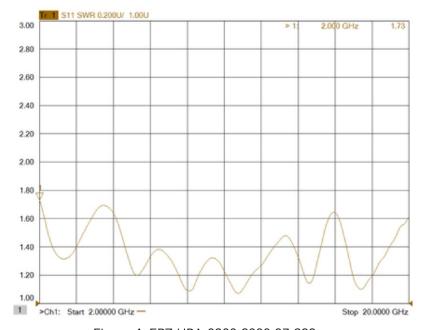


Figure 4: ERZ-HPA-0200-2000-37 S22

ERZ-HPA-0200-2000-37

Absolute Maximum Ratings

Condition	Value
DC Voltage	32 VDC
Maximum Input Power (CW)	+15 dBm
Operation temperature (at case)	-40 to 85°C
Storage temperature	-55 to 125°C

- Stress above these ratings may cause permanent damage to the device.
- It is final user responsibility to maintain the amplifier within the specified ranges.

Measurements Conditions

All measurements provided in this report were performed at the following conditions:

Condition	Value
Temperature (DUT ON)	-35°C, 25°C, 70°C ± 1°C
Humidity	44% ± 10%
DUT Warm up time	30 min
DUT minimum operation time	24 hours
Test equipment warm up time	2 hours
Additional temperature cycles in climatic chamber (DUT OFF)	-35°C to 70°C

Environmental Specifications (By Design)

Operating Temperature: -40 to +85 °C (MIL-STD-810F, method 520.2)

Storage Temperature: -55 to 125 °C (MIL-STD-810F, method 520.2)

Vibration: 8g rms (MIL-STD-810F, method 514.5)

Shock: 20g,11ms,saw-tooth (MIL-STD-810F, method 516.5)

Acceleration: 15g (MIL-STD-810F, method 513.5)

RoHS & REACH Compliance

This part is compliant with EU 2011/65/UE RoHS (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) and REACH (Registration, Evaluation, Authorization and restriction of Chemical substances) directives.

ERZ-HPA-0200-2000-37

DC & Control Interface

Power supply characteristics

Input Voltage: 28 ±4 VDCInput Current: 1.6 A

Control characteristics

• TTL command (ON/OFF function).

• Temperature & Current monitoring.

Table below shows D-sub 9 connector (Male) pinout:

PIN	LABEL	SIGNAL	DESCRIPTION	
1	VCC	+28V Power Source	Power Supply	
2	VCC	+28V Power Source	Power Supply	
3	GND	Ground	Ground	
4	EN	LVTTL Enable	OFF (0V to 0.8V); ON (2V to 5.5V);	
5	TEMP	Temperature Monitor	$Vo = -11.69 \text{ mV/}^{\circ}\text{C} \times \text{T} + 1.8663 \text{ V}$	
6	PGND	Power Ground	Power Ground	
7	PGND	Power Ground	Power Ground	
8	GND	Ground	Ground	
9	I_SEN	Current Sense	Vo= 0.1V/A	

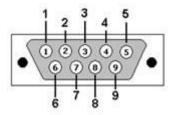
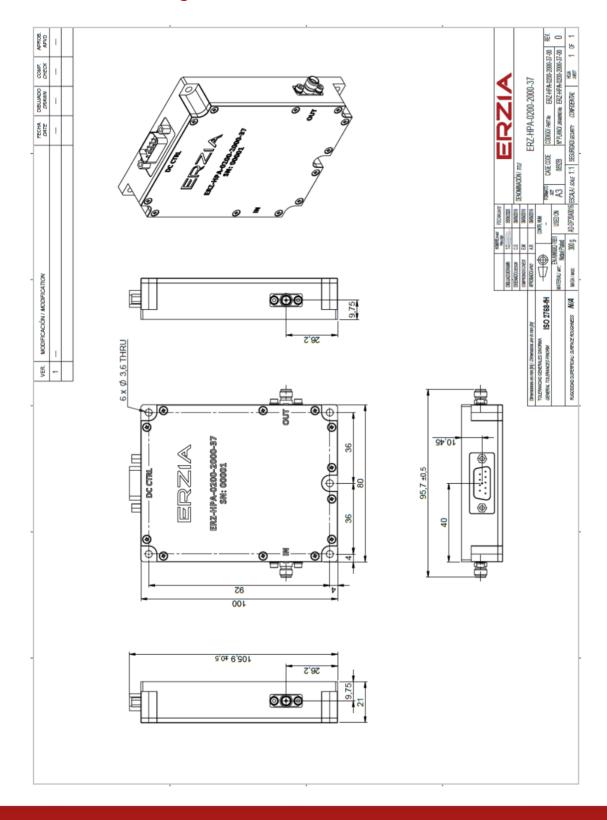



Figure 5: D-sub 9 Connector (Front view)

ERZ-HPA-0200-2000-37

Mechanics and Housing

ERZ-HPA-0200-2000-37

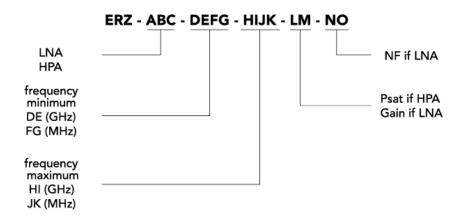
Documentation and Test Reports

All modules are at least delivered with: Electrical Test Report, Certificate of Conformance, Certificate of Acceptance and Origin. Optionally, units can be environmentally tested (temperature, vibration...).

Option (HS): Heat Sink

A heat sink (HS) can be provided to allow the operation of Power Amplifiers. Please note that most power amplifiers need heat sink or appropriate heat dissipation strategy.

Space / Military Usage


Most of ERZIA's products are based on rad-hard technologies and can be manufactured and integrated according to MIL / ECSS or specific hi-rel standard-screening for space, aeronautics, military or specific hi-reliability usage.

Customization and Extended Performances

ERZIA can fully design or adapt one of the existing RF amplifiers designs according to your specifications. Please contact us for additional information.

Model Number Codification

MODEL NUMBER

20200923_rev1.1

 $Copyright @ 2020 \ ERZIA \ Technologies. \ All \ rights \ reserved. \ This \ information \ is \ commercial \ and \ indicative, \ subject \ to \ change \ without \ notice$