

ERZ-HPA-0200-1800-30-DB9

ERZ-HPA-0200-1800-30-DB9

The ERZ-HPA-0200-1800-30-DB9 is a Wideband High Power Amplifier providing an output power higher than 30 dBm and a gain of 33 dB. The compact size and modularity makes it ideal for a wide range of applications.

Main Features:

- Frequency Range: 2 to 18 GHz.
- Typical values: P1dB 30 dBm, Gain 33 dB
- RF connectors (I/O): SMA (F)
- DB9 connector for DC connection, Enable and monitoring signals.
- Several mounting options
- Gold platted compact aluminum housing
- Hi-reliability and dedicated screening/ environmental tests available under request

Typical applications:

- Industrial / Laboratory
- Satcom / Telecom
- Space / Aerospace / Military

Performance

Parameter	Value			Units
	Min	Тур	Max	
Frequency	2	-	18	GHz
Output Power (P1dB)	29	31	35	dBm
Small Signal Gain	31	33	35	dB
Gain Flatness	-	±1	-	dB
Noise Figure	1	2.5	4	dB
VSWR input	1.0:1	1.3:1	2.0:1	-
VSWR output	1.0:1	1.5:1	2.1:1	-
DC Voltage	9	12	15	V
Power Consumption	-	13.5	-	W
RF Connectors	SMA Female IN/OUT			-

Specifications at a case temperature of 25°C at 12V.

ERZ-HPA-0200-1800-30-DB9

Output Power at 1 dB Compression

Figure 1 shows output power at 1dB compression measurement as a function of frequency at room temperature (25°C).

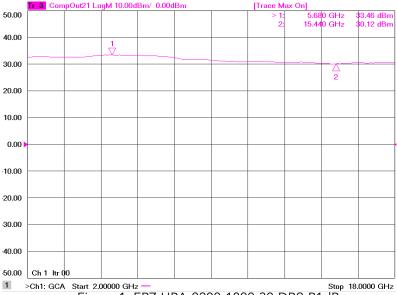


Figure 1: ERZ-HPA-0200-1800-30-DB9 P1dB

Small Signal Gain

Figure 2 shows the small signal gain measurement as a function of frequency at room temperature (25°C).



Figure 2: ERZ-HPA-0200-1800-30-DB9 Small Signal Gain

ERZ-HPA-0200-1800-30-DB9

Small Signal Gain Vs Temperature

Figure 3 shows small signal gain measurement as a function of frequency at low (-35°C), room (25°C) and high (70°C) temperatures.

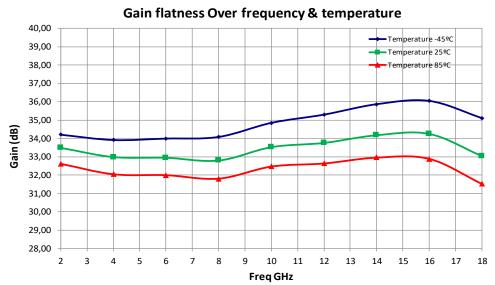


Figure 3: ERZ-HPA-0200-1800-30-DB9 Small Signal Gain Vs Temperature

Noise Figure

Figure 4 shows the noise figure measurement as a function of frequency at room temperature (25°C).

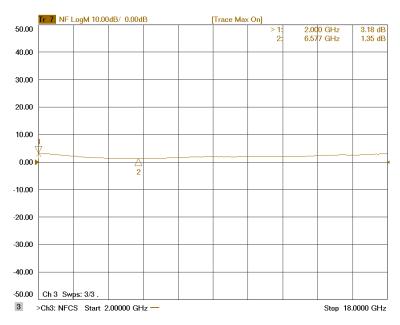


Figure 4: ERZ-HPA-0200-1800-30-DB9 Noise Figure

ERZ-HPA-0200-1800-30-DB9

Input and Output Matching

Figure 5 and Figure 6 show input (S11) and output (S22) VSWR as a function of frequency at room temperature (25°C).

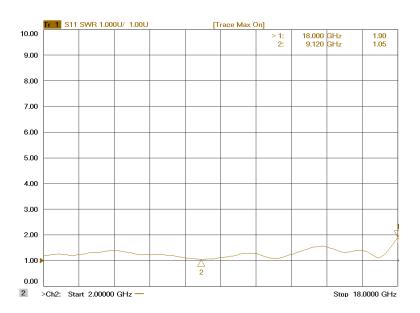


Figure 4: ERZ-HPA-0200-1800-30-DB9 Input Matching

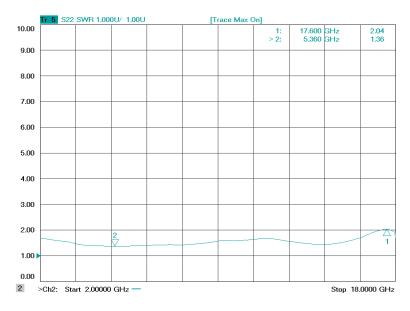
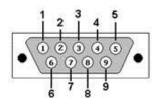


Figure 5: ERZ-HPA-0200-1800-30-DB9 Output Matching

ERZ-HPA-0200-1800-30-DB9


Electrical Interfaces

DB9 connector with the following functions:

VCC: 12±3 VDCGND: Ground

Temperature Sensor: 10 mV/°CCurrent Sensor: IDD 100mV/Ampere

• Enable: TTL levels 3.3V (High level) and GND (Low level). Switching speed below 1 us

DB9 Male Front View.

Pin No.	Description	Signal
1	VCC	+12 VDC Power source
2	VCC	+12 VDC Power source
3	GND	Ground
4	TA_SEN	Temperature sense
5	I_SEN	Current sense
6	GND	Ground
7	GND	Ground
8	EN	Active high enable
9	NC	Not Connected

ERZ-HPA-0200-1800-30-DB9

Absolute Maximum Ratings

Condition	Value
DC Voltage	+15 VDC
Maximum Input Power (CW)	+ 20 dBm
Operation temperature (at case)	-45 to 85°C
Storage temperature	-55 to 125°C

- Stress above these ratings may cause permanent damage to the device.
- It is final user responsibility to maintain the amplifier within the specified ranges.

Measurements Conditions

All measurements provided in this report were performed at the following conditions:

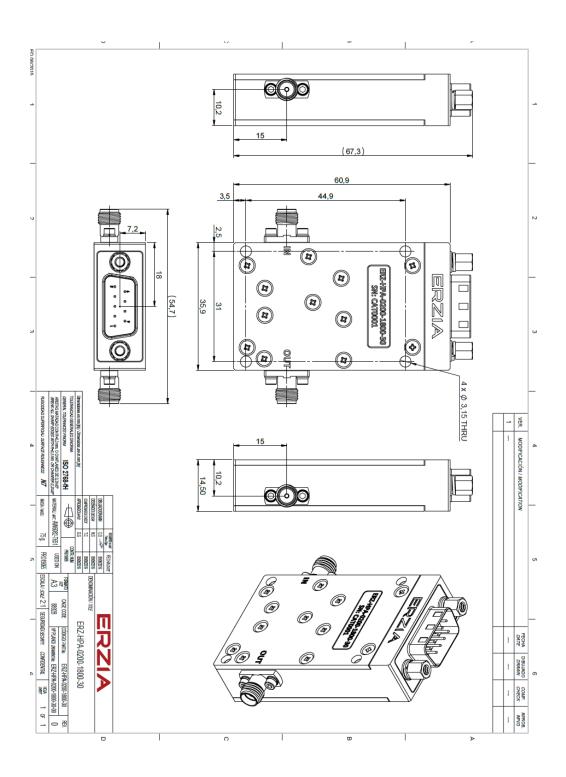
Condition	Value
Temperature (DUT ON)	25°C ± 1°C
Humidity	44% ± 10%
DUT Warm up time	30 min
DUT minimum operation time	24 hours
Test equipment warm up time	2 hours
Additional temperature cycles in climatic chamber (DUT OFF)	-40°C to 85°C

Environmental Specifications (By Design)

Operating Temperature: -45 to +85 °C (MIL-STD-810F, method 520.2) Storage Temperature: -55 to 125 °C (MIL-STD-810F, method 520.2) Vibration: 8g rms (MIL-STD-810F, method 514.5) Shock: 20g,11ms,saw-tooth (MIL-STD-810F, method 516.5) Acceleration: 15g (MIL-STD-810F, method 513.5)

RoHS & REACH Compliance

This part is compliant with EU 2011/65/UE RoHS (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) and REACH (Registration, Evaluation, Authorization and restriction of Chemical substances) directives.



ERZ-HPA-0200-1800-30-DB9

Mechanics and Housing

ERZ-HPA-0200-1800-30-DB9

Documentation and Test Reports

All modules are at least delivered with: Electrical Test Report, Certificate of Conformance, Certificate of Acceptance and Origin. Optionally, units can be environmentally tested (temperature, vibration...).

Option (HS): Heat Sink

A heat sink (HS) can be provided to allow the operation of Power Amplifiers. Please note that most power amplifiers need heat sink or appropriate heat dissipation strategy.

Space / Military Usage

Most of ERZIA's products are based on rad-hard technologies and can be manufactured and integrated according to MIL / ECSS or specific hi-rel standard-screening for space, aeronautics, military or specific hi-reliability usage.

Customization and Extended Performances

ERZIA can fully design or adapt one of the existing RF amplifiers designs according to your specifications. Please contact us for additional information.

Model Number Codification

MODEL NUMBER

20190827_rev1.1

Copyright © 2019 ERZIA Technologies. All rights reserved. This information is commercial and indicative, subject to change without notice