Main Features:
- Frequency Range: 0.5 to 2 GHz.
- Typical values: P_{out} 28 dBm, Gain 27 dB
- RF connectors (I/O): SMA Female
- DB9 connector for DC connection, Enable and monitoring signals.
- Several mounting options
- Gold plated compact aluminum housing
- Hi-reliability and dedicated screening/environmental tests available under request

ERZ-HPA-0050-0200-25

The ERZ-HPA-0050-0200-25 is a High Power Amplifier providing an output power of 28 dBm and a gain of 27 dB. The compact size and modularity makes it ideal for a wide range of applications.

Typical applications:
- Industrial / Laboratory
- Satcom / Telecom
- Space / Aerospace / Military

Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>0.5 - 2</td>
<td>GHz</td>
</tr>
<tr>
<td>Output Power (P1dB)</td>
<td>26 - 31</td>
<td>dBm</td>
</tr>
<tr>
<td>Small Signal Gain</td>
<td>25 - 29</td>
<td>dB</td>
</tr>
<tr>
<td>Gain Flatness</td>
<td>±1</td>
<td>dB</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>2.8 - 3</td>
<td>dB</td>
</tr>
<tr>
<td>VSWR input</td>
<td>1.0:1 - 2.0:1</td>
<td></td>
</tr>
<tr>
<td>VSWR output</td>
<td>1.0:1 - 2.0:1</td>
<td></td>
</tr>
<tr>
<td>DC Voltage</td>
<td>9 - 15</td>
<td>V</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>4.5</td>
<td>W</td>
</tr>
<tr>
<td>RF Connectors</td>
<td>SMA Female</td>
<td>-</td>
</tr>
</tbody>
</table>

Specifications at a case temperature of 25°C at 12 V
Output Power at 1 dB Compression

Figure 1 shows output power at 1dB compression measurement as a function of frequency at room temperature (25°C).

![Output Power at 1 dB Compression](image)

Small Signal Gain

Figure 2 shows the small signal gain measurement as a function of frequency at room temperature (25°C).

![Small Signal Gain](image)
Small Signal Gain Vs Temperature

Figure 3 shows small signal gain measurement as a function of frequency at low (-35°C), room (25°C) and high (70°C) temperatures.

![Figure 3: ERZ-HPA-0050-0200-25 Small Signal Gain Vs Temperature](image1)

Noise Figure

Figure 4 shows the noise figure measurement as a function of frequency at room temperature (25°C).

![Figure 4: ERZ-HPA-0050-0200-25 Noise Figure](image2)
Input and Output Matching

Figure 5 and Figure 6 show input (S11) and output (S22) VSWR as a function of frequency at room temperature (25°C).

Figure 5: ERZ-HPA-0050-0200-25 Input Matching

Figure 6: ERZ-HPA-0050-0200-25 Output Matching
Electrical Interfaces

DB9 connector with the following functions:

- **VCC**: 12±3 VDC
- **GND**: Ground
- **Temperature Sensor**: 10 mV/°C
- **Current Sensor**: IDD 100mV/Ampere
- **Enable**: TTL levels 3.3V (High level) and GND (Low level). Switching speed below 1 us

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Description</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
<td>+12 VDC Power source</td>
</tr>
<tr>
<td>2</td>
<td>VCC</td>
<td>+12 VDC Power source</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>TA_SEN</td>
<td>Temperature sense</td>
</tr>
<tr>
<td>5</td>
<td>I_SEN</td>
<td>Current sense</td>
</tr>
<tr>
<td>6</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>8</td>
<td>EN</td>
<td>Active high enable</td>
</tr>
<tr>
<td>9</td>
<td>NC</td>
<td>Not Connected</td>
</tr>
</tbody>
</table>
Measurements Conditions

All measurements provided in this report were performed at the following conditions:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (DUT ON)</td>
<td>25 °C ± 1°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>44% ± 10%</td>
</tr>
<tr>
<td>DUT Warm up time</td>
<td>30 min</td>
</tr>
<tr>
<td>DUT minimum operation time</td>
<td>24 hours</td>
</tr>
<tr>
<td>Test equipment warm up time</td>
<td>2 hours</td>
</tr>
<tr>
<td>Additional temperature cycles in climatic chamber (DUT OFF)</td>
<td>-40°C to 85°C</td>
</tr>
</tbody>
</table>

Environmental Specifications (By Design)

Operating Temperature: -45 to +85 °C (MIL-STD-810F, method 520.2)
Storage Temperature: -55 to 125 °C (MIL-STD-810F, method 520.2)
Vibration: 8g rms (MIL-STD-810F, method 514.5)
Shock: 20g,11ms,saw-tooth (MIL-STD-810F, method 516.5)
Acceleration: 15g (MIL-STD-810F, method 513.5)

RoHS & REACH Compliance

This part is compliant with EU 2011/65/UE RoHS (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) and REACH (Registration, Evaluation, Authorization and restriction of Chemical substances) directives.
Mechanics and Housing
Documentation and Test Reports

All modules are at least delivered with: Electrical Test Report, Certificate of Conformance, Certificate of Acceptance and Origin. Optionally, units can be environmentally tested (temperature, vibration...).

Option (HS): Heat Sink

A heat sink (HS) can be provided to allow the operation of Power Amplifiers. Please note that most power amplifiers need heat sink or appropriate heat dissipation strategy.

Space / Military Usage

Most of ERZIA’s products are based on rad-hard technologies and can be manufactured and integrated according to MIL / ECSS or specific hi-rel standard-screening for space, aeronautics, military or specific hi-reliability usage.

Customization and Extended Performances

ERZIA can fully design or adapt one of the existing RF amplifiers designs according to your specifications. Please contact us for additional information.

Model Number Codification

MODEL NUMBER

ERZ - ABC - DEFG - HIJK - LM - NO

LNA
HPA
frequency
minimum
DE (GHz)
FG (MHz)
frequency
maximum
HI (GHz)
JK (MHz)

NF if LNA
Psat if HPA
Gain if LNA

Tel: +34 942 29 13 42 sales@erzia.com www.erzia.com